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Who Are We?

• Ping An Life Insurance Co. sells life insurance
products
• long period of protection
• comprehensive scope of insurance coverage
• …

200M+1.2M+

Agents Customers
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Outline

• Introduction

• Two pieces of representative work
• emotion recognition in dialogues
• entity alias discovery from knowledge graphs

• Conclusion
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Our AI Technologies

Deep Learning,
Recommendation Computer Vision

NLP, Knowledge Graphs,
Chatbots

Computational Intelligence Perceptual Intelligence Cognitive Intelligence
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Core Applications

• To Agents
• Visiting assistant
• Training assistant
• AskBob for agents
• …

• To Customers
• AskBob for financial customer services
• Video follow-up chatbot
• …
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Professional Insurance Services: Visiting
Assistant
• The first Online Visiting Assistant
• AI guest room

• Features
• One-click explanation
• Full accompany
• Content creation

Dialog Q&A Real-time Prediction

Real-time Conversation 
Assistance Content Generation
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Professional Insurance Services: Video Follow-
up Chatbot

• The first industry multi-modal
follow-up chatbot
• Face-to-face interaction 
• Time reduces from 5 days to 2.8 

minutesØ Impersonate video interaction
• User-friendly

Ø Flexible follow-up
• 7*24 online service

ØEfficient access to insurance policy
• Real-time Q&A

Prompt
Initiate

Multimodal
Dialogue

Realtime
Services

Image Generation Face Recognition

Lips Matching Active Dialogue
Guidance
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Insurance Middle Platform (MP)

Personalized development
Standard deployment
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Training Inference Scheduling 

AI Algo.Deep 
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Chatbots
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20+
Chatbots
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Champions Patents

300 +

Papers

10 +

DSTC8, SemEval2020 IJCAI, CIKM, ...

A unified multi-modal chatbot platform

10+
Platforms

100+
Online

Services

Text Speech Video

System, Technology, ...
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Representative Work I
• HiGRU: Hierarchical Gated Recurrent Units for Utterance-level 

Emotion Recognition
• Joint work with CUHK
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Motivation: Emotion Recognition in Dialogue
Systems
• The same word delivers different

emotions
• Some emotions rarely appear
• Long-range contextual

information is hard to captured
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Contribution

• A HiGRU framework to better learn both the individual utterance 
embeddings and the contextual information of utterances
• Two progressive variants: 

a) HiGRU-f with residual connection to sufficiently incorporate the individual 
word/utterance-level information; and 

b) HiGRU-sf with self-attention to capture the long-range contextual 
information

• Extensive experiments are conducted to demonstrate the superior
performance of our proposal than SOTA methods
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Problem Definition: Utterance-level Emotion 
Recognition
• Input: a set of dialogues, D= 𝐷# #$%

&

• L: the number of dialogues

• 𝐷# = 𝑢(, 𝑠(, 𝑐( ($%
,- : a dialogue

• 𝑢(: utterance

• 𝑠(: speaker

• 𝑐(: emotion

• Goal: to train a model to tag each new utterance with an emotion 
label as accurately as possible
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Our Proposal: Hierarchical Gated Recurrent
Units (HiGRU)

• Lower-level bi-GRU: individual utterance embedding
• Upper-level bi-GRU: contextual utterance embedding
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HiGRU-f

• Fuse individual word/utterance embeddings to strengthen individual
information
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HiGRU-sf
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• Self-Attention + Feature Fusion
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Model Training

• Minimize weighted categorical cross-entropy

• predicted emotion:

• weight:
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Experiments

• Datasets

• Metrics
• Weighted Accuracy (WA)

• Unweighted Accuracy (UWA)

• IEMOCAP: ~12 hours of audiovisual data, 
including video, speech, motion capture 
of face, and text transcriptions

• Friends: Friends TV show transcripts  
• EmotionPush: Facebook messenger logs 
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Methods and Setup

• Methods
• Existing methods: bcLSTM, CMN, SA-BiLSTM, CNN-DCNN

• Our implementation: bcLSTM*(weighted loss), bcGRU(weighted loss), HiGRU,
HiGRU-f, HiGRU-sf

• Parameters of HiGRU, HiGRU-f, HiGRU-sf
• # hidden states: 300

• FC layer: two sub-layers with 100 neurons each

• Training: Adam, Anneal strategy, early stop, gradient clipping,
dropout

19



Results on IEMOCAP

• In WA: HiGRU achieves at least 
• 8.7% improvement over CMN (T) and 
• 3.8% improvement over CMN (T+V+A)

20



Results on Friends and EmotionPush

• HiGRU gains at least 6.0% improvement over CNN-DCNN, the best performance
• HiGRU-f and HiGRU-sf usually perform better than HiGRU
• Training with mixed datasets can only help the imbalanced dataset, EmotionPush
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Successful Cases

• Scene-1: both success 
• Scene-2:
• bcGRU: Joy → Ang 

• Scene-3:
• bcGRU: 

• Sad → Hap 
• Sad → Neu 

• HiGRU-sf:
• Hap → Sad
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Failed Cases

• Scene-4:
• bcGRU: Joy → Sad
• HiGRU: Joy → Neu

• Scene-5:
• bcGRU:

• Neu → Sad
• Joy → Neu

• HiGRU-sf
• Neu → Sad
• Joy → Sad

23



Summary

• A hierarchical Gated Recurrent Unit (HiGRU) framework
• to tackle the utterance-level emotion recognition in dialogue systems
• Lower-level GRU: learn the individual utterance embeddings
• Upper-level GRU: capture the contexts of utterances

• Two variants
• HiGRU-f: capture the word/utterance-level inputs, and 
• HiGRU-sf: capture the long-range contextual information

• Demonstrate the superior performance on three public datasets
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Representative Work II
KGSynNet: A Medical Entity Alias Discovery Framework with Knowledge 
Graphs
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Motivation

• KG entity alias (synonym) discovery aims to find 
synonymous aliases for an entity in knowledge
graphs

• Challenges
• Only query terms, no context
• Only entities in knowledge graph

• Existing methods via surface string matching or 
word/char embedding cannot capture external
knowledge
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Contribution

• A novel framework, KGSynNet, to
• jointly learn both semantic feature and knowledge representation of entities

from knowledge graphs
• craftily design fusion gate to enhance information interaction
• demonstrate the effectiveness through experiments on both offline and

online test

• The first health insurance benchmark consists of
• a Chinese cross-domain knowledge graph: occupations, diseases, and

insurance products
• a dataset of annotated alias-to-entity pairs of diseases
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Problem Definition: Entity alias discovery

• Inputs (assumption: aliases is given)
• a set of disease query terms (aliases)

• e.g., cutis hyperelastica
• a cross-domain knowledge graph

• occupations, diseases, and insurance products
• a number of annotated alias-to-entity pairs of diseases

• Output
• determine a list of synonymous entities for the disease query term

28



Our Proposal

1. Input representations
• Char embeddings (semantic information)
• Entity knowledge embedding (pretrained)

2. Embedding space alignment
• Shared weights in FC

3. Fusion of Entity’s Semantic and Knowledge 
Representations

4. Similarity Matching: noise- contrastive
estimation

cutis hyperelastica
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Properties: Adding External Knowledge

• Knowledge embedding
• to represent triples in the knowledge graph

via jointly TransC-TransE learning

• Adaptive knowledge integration
• Fusion gate to adaptively incorporate the 

amount of knowledge with the learned
semantics embeddings
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Results

• KGSynNet beats all baselines 
• Knowledge embedding plays a significant role in improving

performance

• Difficult: no char overlap in aliases and entities
• Regular: at least one char overlap
• All: Difficult + Regular
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Summary

• A novel framework, KGSynNet,
• captures both semantic meaning and knowledge information
• effectively leverage the knowledge information via fusion gate
• end-to-end implementation to learn entity representation and to discover an

entity aliases

• The first health insurance benchmark for
• Chinese cross-domain knowledge graphs, and 
• an annotated dataset for alias-to-entity pairs of diseases
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Conclusion

• Briefly review AI technologies development and applications in Ping
An Life

• Present two representative work on
• emotion recognition in dialogues
• medical entity alias discovery in knowledge graphs

• Many potential applications and research problems exist …
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