AI Technologies Empower Professional Services Insurance in Ping An Life

Dr. Haiqin Yang

Al Department, Ping An Life

Who Are We?

- Ping An Life Insurance Co. sells life insurance products
 - long period of protection
 - comprehensive scope of insurance coverage

Outline

- Introduction
- Two pieces of representative work
 - emotion recognition in dialogues
 - entity alias discovery from knowledge graphs
- Conclusion

Our AI Technologies

Computational Intelligence

Perceptual Intelligence

Cognitive Intelligence

Deep Learning, Recommendation

Computer Vision

NLP, Knowledge Graphs, Chatbots

Core Applications

• To Agents

- Visiting assistant
- Training assistant
- AskBob for agents
- ...

• ...

• To Customers

- AskBob for financial customer services
- Video follow-up chatbot

Professional Insurance Services: Visiting Assistant

- The first Online Visiting Assistant
 - Al guest room
- Features
 - One-click explanation
 - Full accompany
 - Content creation

Dialog Q&A	Real-time Prediction
Real-time Conversation Assistance	Content Generation

Professional Insurance Services: Video Followup Chatbot

Real-time Q&A

- The **first industry multi-modal** follow-up chatbot
 - Face-to-face interaction
 - Time reduces from 5 days to 2.8 minutes

Image Generation	Face Recognition
Lips Matching	Active Dialogue Guidance

Insurance Middle Platform (MP)

Chatbots

Text

A unified multi-modal chatbot platform

Representative Work I

- HiGRU: Hierarchical Gated Recurrent Units for Utterance-level
 Emotion Recognition
- Joint work with CUHK

Motivation: Emotion Recognition in Dialogue Systems

- The same word delivers different emotions
- Some emotions rarely appear
- Long-range contextual
 - information is hard to captured

Role	Utterance	Emotion
Rachel	Oh okay, I'll fix that to. What's her e- mail address?	Neutral
Ross	Rachel!	Anger
Rachel	All right, I promise. I'll fix this. I swear. I'll-I'll- I'll-I'll talk to her.	Non-neutral
Ross	Okay!	Anger
Rachel	Okay.	Neutral
Nurse	This room's available.	Neutral
Rachel	Okay!	Joy
Rachel	Okay wait!	Non-neutral
Rachel	You listen to me!	Anger

Contribution

- A HiGRU framework to better learn both the individual utterance embeddings and the contextual information of utterances
- Two progressive variants:
 - a) HiGRU-f with residual connection to sufficiently incorporate the individual word/utterance-level information; and
 - b) HiGRU-sf with self-attention to capture the long-range contextual information
- Extensive experiments are conducted to demonstrate the superior performance of our proposal than SOTA methods

Problem Definition: Utterance-level Emotion Recognition

- Input: a set of dialogues, $\mathcal{D} = \{D_i\}_{i=1}^L$
 - *L*: the number of dialogues
 - $D_i = \{(u_j, s_j, c_j)\}_{j=1}^{N_i}$: a dialogue
 - u_j : utterance
 - *s_j*: speaker
 - c_j : emotion
- **Goal**: to train a model to tag each new utterance with an emotion label as accurately as possible

Our Proposal: Hierarchical Gated Recurrent Units (HiGRU) Softmax $e(u_i)$ Max-pooling Fully-connected $e_c(w_k)$ $e_c(u_j)$... H_1 H_2 $\overline{H_{N_i}}$ h_{M i} $\left| \overrightarrow{H_{2}} \right|$ $\overrightarrow{H_1}$ GRU GRU GRU GRU $e(w_k)$ $e(u_i)$ W_1 W_2 W_3 W4 u_1 u_2 u_4 u_{N_i} ? **|**'|| okay oh

- Lower-level bi-GRU: individual utterance embedding
- Upper-level bi-GRU: contextual utterance embedding

• Fuse individual word/utterance embeddings to strengthen individual information

• Self-Attention + Feature Fusion

Model Training

Minimize weighted categorical cross-entropy

$$loss = -\frac{1}{\sum_{i=1}^{L} N_i} \sum_{i=1}^{L} \sum_{j=1}^{N_i} \omega(c_j) \sum_{c=1}^{|\mathcal{C}|} y_j^c \log_2(\hat{y}_j^c)$$

- predicted emotion: $\hat{y}_j = \operatorname{softmax}(W_{fc} \cdot e_c(u_j) + b_{fc})$
- weight: $\frac{1}{\omega(c)} = \frac{I_c^{\alpha}}{\sum_{c'=1}^{|\mathcal{C}|} I_{c'}^{\alpha}}$

Datasets

Experiments

Dataset	#Dial	ogue (#Uttera	#Emotion					
Dataset	Train	Val	Test	Ang	Hap/Joy	Sad	Neu	Others
IEMOCAP	96 (3,569)	24 (721)	31 (1,208)	1,090	1,627	1,077	1,704	0
Friends	720 (10,561)	80 (1,178)	200 (2,764)	759	1,710	498	6,530	5,006
EmotionPush	720 (10,733)	80 (1,202)	200 (2,807)	140	2,100	514	9,855	2,133

- IEMOCAP: ~12 hours of audiovisual data, including video, speech, motion capture of face, and text transcriptions
- Friends: Friends TV show transcripts
- EmotionPush: Facebook messenger logs

- Metrics
 - Weighted Accuracy (WA)
 - Unweighted Accuracy (UWA)

$$WA = \sum_{c=1}^{|\mathcal{C}|} p_c \cdot a_c, \quad UWA = \frac{1}{|\mathcal{C}|} \sum_{c=1}^{|\mathcal{C}|} a_c,$$

Methods and Setup

Methods

- Existing methods: bcLSTM, CMN, SA-BiLSTM, CNN-DCNN
- Our implementation: bcLSTM_{*}(weighted loss), bcGRU(weighted loss), HiGRU, HiGRU-f, HiGRU-sf
- Parameters of HiGRU, HiGRU-f, HiGRU-sf
 - # hidden states: 300
 - FC layer: two sub-layers with 100 neurons each
- **Training:** Adam, Anneal strategy, early stop, gradient clipping, dropout

Results on IEMOCAP

Model (Feat)	Ang	Нар	Sad	Neu	WA	UWA
bcLSTM ¹ (T)	76.07	78.97	76.23	67.44	73.6	74.6
(T+V+A)	77.98	79.31	78.30	69.92	76.1	76.3
$CMN^2(T)$	-	-	-	-	74.1	-
(T+V+A)	89.88	81.75	77.73	67.32	77.6	<u>79.1</u>
bcLSTM _* (T)	75.29	79.40	78.07	76.53	77.7(1.1)	77.3(1.4)
bcGRU (T)	77.20	80.99	76.26	72.50	76.9(1.6)	76.7(1.3)
HiGRU (T)	75.41	91.64	79.79	70.74	80.6(0.5)	79.4(0.5)
HiGRU-f (T)	76.69	88.91	80.25	75.92	81.5(0.7)	80.4(0.5)
HiGRU-sf (T)	74.78	89.65	80.50	77.58	82.1 (0.4)	$\boldsymbol{80.6}(0.2)$

¹ by (Poria et al., 2017); ² by (Hazarika et al., 2018).

- In WA: HiGRU achieves at least
 - 8.7% improvement over CMN (T) and
 - 3.8% improvement over CMN (T+V+A)

Results on Friends and EmotionPush

Model	Train		Friends (F)					EmotionPush (E)					
Widuei	11 am	Ang	Joy	Sad	Neu	WA	UWA	Ang	Joy	Sad	Neu	WA	UWA
SA-BiLSTM ¹	F+E	49.1	68.8	30.6	90.1	-	59.6	24.3	70.5	31.0	94.2	-	55.0
CNN-DCNN ²	F+E	55.3	71.1	55.3	68.3	-	62.5	45.9	76.0	51.7	76.3	-	62.5
bcLSTM _*	F(E)	64.7	69.6	48.0	75.6	72.4(4.2)	64.4(1.6)	32.9	69.9	47.1	78.0	74.7(4.4)	57.0(2.1)
bcGRU	F(E)	69.5	65.4	52.9	74.7	71.7(4.7)	65.6(1.2)	33.7	71.1	57.2	76.1	73.9(2.9)	59.5(1.8)
bcLSTM _*	F+E	54.5	75.6	43.4	73.0	70.5(4.5)	61.6(1.6)	52.4	79.1	54.7	73.3	73.4(3.8)	64.9(2.1)
bcGRU	F+E	59.0	78.6	42.3	71.4	70.2(5.1)	62.8(1.4)	49.4	74.8	61.9	72.4	72.1(4.3)	64.6(1.8)
HiGRU	F(E)	66.9	73.0	51.8	77.2	74.4 (1.7)	67.2(0.6)	55.6	78.1	57.4	73.8	73.8(2.0)	66.3(1.7)
HiGRU-f	F(E)	69.1	72.1	60.4	72.1	71.3(2.9)	68.4(1.0)	55.9	78.9	60.4	72.4	73.0(2.2)	66.9(1.2)
HiGRU-sf	F(E)	70.7	70.9	57.7	76.2	74.0(1.4)	68.9 (1.5)	57.5	78.4	64.1	72.5	73.0(1.6)	68.1(1.2)
HiGRU	F+E	55.4	81.2	51.4	64.4	65.8(4.2)	63.1(1.5)	50.8	76.9	69.0	75.7	75.3(1.7)	68.1(1.2)
HiGRU-f	F+E	54.9	78.3	55.5	68.7	68.5(3.0)	64.3(1.2)	58.3	79.1	69.6	70.0	71.5(2.5)	69.2(0.9)
HiGRU-sf	F+E	56.8	81.4	52.2	68.7	69.0(2.0)	64.8(1.3)	57.8	79.3	66.3	77.4	77.1 (1.0)	70.2 (1.1)

¹ by (Luo et al., 2018); ² by (Khosla, 2018).

- HiGRU gains at least 6.0% improvement over CNN-DCNN, the best performance
- HiGRU-f and HiGRU-sf usually perform better than HiGRU
- Training with mixed datasets can only help the imbalanced dataset, EmotionPush

Successful Cases

- Scene-1: both success
- Scene-2:
 - bcGRU: Joy \rightarrow Ang

• Scene-3:

- bcGRU:
 - Sad \rightarrow Hap
 - Sad \rightarrow Neu
- HiGRU-sf:
 - Hap \rightarrow Sad

Role	Utterance	Truth	bcGRU	HiGRU-sf
Scene-1				
Phoebe	Okay. Oh but don't tell them	Neu	Neu	Neu
	Monica's pregnant because			
D 1 1	they frown on that.			
Rachel	Okay.	Neu	Neu	Neu
Phoebe	Okay.	Neu	Neu	Neu
Scene-2				
Phoebe	Yeah! Sure! Yep! Oh,	Joy	Ang	Joy
	y'know what? If I heard a			
	shot right now, I'd throw my			
C	body on you.	0.1		
Gary	Oh yeah? Well maybe you	Other	/	/
	and I should take a walk through a bad neighborhood.			
DI I	<u> </u>	Ŧ		
Phoebe	Okay!	Joy	Ang	Joy
Gary	All right.	Neu	Neu	Neu
Scene-3				
Female	Can I send you, like videos	Other	/	/
	and stuff? What about when			
	they start walking.			~
Male	Yeah yeah yeah.	Sad	Нар	Sad
Male	You you record every sec-	Hap	Hap	Sad
	ond. You record every sec-			
	ond because I want to see it			
	all. Okay?			
Male	If I don't get to see it now, I	Other	/	/
	get to see it later at least, you			
	know? You've got to keep it			
	all for me; all right?			
Female	Okay.	Sad	Neu	Sad

22

Failed Cases

• Scene-4:

- bcGRU: Joy \rightarrow Sad
- HiGRU: Joy \rightarrow Neu

• Scene-5:

- bcGRU:
 - Neu \rightarrow Sad
 - Joy \rightarrow Neu
- HiGRU-sf
 - Neu \rightarrow Sad
 - Joy \rightarrow Sad

Role	Utterance	Truth	bcGRU	HiGRU-sf
Scene-4				
Ross	Hi.	Neu	Neu	Neu
Rachel	Hi.	Neu	Neu	Neu
Ross	Guess what?	Neu	Neu	Neu
Rachel	What?	Neu	Neu	Neu
Ross	They published my paper.	Joy	Sad	Neu
Rachel	Oh, really, let me see, let me	Joy	Neu	Neu
	see.			
Phoebe	Rach, look! Oh, hi! Where	Other	/	/
	is my strong Ross Sky-			
	walker to come rescue me.			
	There he is.			
Scene-5				
Speaker-1	Sorry for keeping you up	Sad	Sad	Sad
Speaker-2	Lol don't be	Joy	Joy	Joy
Speaker-2	I didn't have to get up today	Neu	Sad	Sad
Speaker-1	:p	Joy	Joy	Joy
Speaker-2	It's actually been a really lax	Joy	Neu	Sad
	day			

Summary

- A hierarchical Gated Recurrent Unit (HiGRU) framework
 - to tackle the utterance-level emotion recognition in dialogue systems
 - Lower-level GRU: learn the individual utterance embeddings
 - Upper-level GRU: capture the contexts of utterances
- Two variants
 - HiGRU-f: capture the word/utterance-level inputs, and
 - HiGRU-sf: capture the long-range contextual information
- Demonstrate the superior performance on three public datasets

Representative Work II

KGSynNet: A Medical Entity Alias Discovery Framework with Knowledge Graphs

Motivation

- KG entity alias (synonym) discovery aims to find synonymous aliases for an entity in knowledge graphs
- Challenges
 - Only query terms, no context
 - Only entities in knowledge graph
- Existing methods via surface string matching or word/char embedding cannot capture external knowledge

Contribution

- A novel framework, KGSynNet, to
 - jointly learn both semantic feature and knowledge representation of entities from knowledge graphs
 - craftily design fusion gate to enhance information interaction
 - demonstrate the effectiveness through experiments on both offline and online test
- The first health insurance benchmark consists of
 - a Chinese cross-domain knowledge graph: occupations, diseases, and insurance products
 - a dataset of annotated alias-to-entity pairs of diseases

Problem Definition: Entity alias discovery

• Inputs (assumption: aliases is given)

- a set of disease query terms (aliases)
 - e.g., cutis hyperelastica
- a cross-domain knowledge graph
 - occupations, diseases, and insurance products
- a number of annotated alias-to-entity pairs of diseases

Output

• determine a list of synonymous entities for the disease query term

Our Proposal

- 1. Input representations
 - Char embeddings (semantic information)
 - Entity knowledge embedding (pretrained)
- 2. Embedding space alignmentShared weights in FC
- Fusion of Entity's Semantic and Knowledge Representations
- 4. Similarity Matching: noise- contrastive estimation

Properties: Adding External Knowledge

- Knowledge embedding
 - to represent triples in the knowledge graph via jointly TransC-TransE learning
- Adaptive knowledge integration
 - Fusion gate to adaptively incorporate the amount of knowledge with the learned semantics embeddings

- Difficult: no char overlap in aliases and entities
- Regular: at least one char overlap
- All: Difficult + Regular

		Hits@3			Hits@5			Hits@10	
Model variants	All	Regular	Difficult	All	Regular	Difficult	All	Regular	Difficult
JACCARD [19]	52.28%	56.61%	0.00%	58.03%	62.83%	0.00%	63.76%	69.04%	0.00%
w2v [3]	47.00%	50.88%	0.00%	52.28%	56.59%	2.30%	58.31%	63.10%	4.60%
CNN [16]	51.76%	55.69%	4.33%	57.75%	61.98%	6.38%	65.13%	69.72%	9.34%
BERT [4]	54.60%	58.87%	2.96%	60.41%	65.02%	4.78%	66.50%	71.39%	7.52%
DNorm [20]	56.23%	59.78%	12.76%	63.79%	67.58%	17.77%	71.89%	75.64%	26.42%
SurfCon [30]	58.29%	62.02%	12.98%	66.27%	70.11%	19.59%	75.20%	79.03%	28.93%
KGSynNet	66.84%	70.81%	18.91%	73.09%	77.13%	24.37%	79.41%	83.35%	31.89%
-TransC (TransE only)	65.80%	69.92%	15.95%	71.44%	75.79%	18.91%	78.94%	83.18%	27.80%
->Direct Addition	63.51%	67.19%	19.13%	70.85%	74.47%	27.10%	78.13%	81.77%	34.17%
->Ernie Fusion	61.98%	65.85%	15.26%	68.63%	72.54%	21.41%	76.28%	80.29%	27.79%
-Knowledge Embedding	64.91%	69.07%	14.58%	71.56%	75.77%	20.73%	79.12%	83.14%	30.52%

- KGSynNet beats all baselines
- Knowledge embedding plays a significant role in improving performance

Results

Summary

- A novel framework, KGSynNet,
 - captures both semantic meaning and knowledge information
 - effectively leverage the knowledge information via fusion gate
 - end-to-end implementation to learn entity representation and to discover an entity aliases

• The first health insurance benchmark for

- Chinese cross-domain knowledge graphs, and
- an annotated dataset for alias-to-entity pairs of diseases

Conclusion

- Briefly review AI technologies development and applications in Ping An Life
- Present two representative work on
 - emotion recognition in dialogues
 - medical entity alias discovery in knowledge graphs
- Many potential applications and research problems exist ...

```
https://iconip2020.apnns.org/
```


AI Department Ping An Life

AI Empowers Insurance Services

hqyang.github.io hqyang@ieee.org