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Recommender Systems Have Been Widely Used
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Recommender Systems Improve User Engagement

preciéion marketing

YouTube Homepage: 60%+ more clicks [Davidson et al. 2010]
Netflix: 80%+ more movie watches [Gomze-Uribe et al 2016]

Amazon: 30%+ more page Views [Smith and Linden, 2017]



Overview of Recommender Systems

tem E.g., location, time,
. . i . H weather, mood ... context data

% 413 B ° rating data
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user % E.g., user ger?der, item data
3 5 age, occupation

5 " 4 personality ... E.g., item category,
a 2 | 4 5 description, image ...

Input: historical user-item interactions, and
optionally additional side information (e.qg.,
user demographic, item attributes)

Output: how likely a user would interact with an item
(e.g., a movie, a song, a product)



More Data Used in Recommender Systems, Better Performance
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» Singh and Gordon 2008. Relational learning via collective matrix factorization. ACM KDD 2008.
» Pan 2016. A survey of transfer learning for collaborative recommendation with auxiliary data. Neurocomputing.



Reality in Recommender Systems: Data Silos
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Differentially Private Matrix Factorization [Knijnenburg and Berkovsky, 2017]

Matrix Factorization N
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Bart P. Knijnenburg and Shlomo Berkovsky, 2017. Privacy for Recommender Systems. RecSys 2017 Tutorial.



We Need New Technology for RecSys with Decentralized Data
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Federated Learning to Bridge Decentralized Data

Federated Learning Lossless performance

* Performance of ‘Afed B" s

m closeto ‘A+B’

Global Model
Data protected
P ¥ é * Raw data stays locally
A S  Only parameters and gradients are
UL securely transmitted
Tighbld\

Yang et al. 2018, Federated machine learning: concepts and applications. ACM TIST. 10



Federated Recommendation

Recommender System
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Assumption: for easier understanding and system efficiency, we assume the existence of a
trustworthy 3™-party server in the following federated recommendation solution discussion.

In general, such 3@-party servers can be removed to strengthen the data security.
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Users

Categorization of Federated Recommendation

Horizontal Federated Recommendation
(a.k.a. Item-based FedRec)

Items

Large overlap of items of the two rating matrices

Users

Vertical Federated Recommendation
(a.k.a. User-based FedRec)

Items

Large overlap of users of the two rating matrices
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Category 1: Horizontal Federated Recommendation

Users

Items

Large overlap of items of the two rating matrices
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Horizontal Federated Recommendation: Case 1

Example: movie
recommendation
with data from
individual users

No data exchange

Party C

2 4 5
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Federated Collaborative Filtering [Ammad et al. 2019]

Intuition: decentralized matrix factorization, each user profile is updated locally, item profiles are
aggregated and updated by server.
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Ammad-ud-din, et al. 2019. Federated Collaborative Filtering for Privacy-Preserving Personalized Recommendation System. arXiv:1901.09888.
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Federated Collaborative Filtering [Ammad et al. 2019]

Honest-but-curious Server

Initialize: initialize the item-profile V
Update: perform updates on V whenever receives the gradient G; fromuser-iby: V =V — G;
Parameter Sharing: the latest V are kept available for all users’ download

Latest V

Honest user 1

Gradient
Gy

Local Data

Local
Update

Honest user 2 Honest user N
Latest V Gradient Latest V Gradient
G, Gy
Local Data Local Data
Local Local

Pros: user data is decentralized.
Cons: no MPC (plaintext gradients).

Training Process:

@ Server initializes item profiles,
parties initializes user profiles;

9 Sever distributes item profiles to
parties;

Parties locally update user profiles
@ with item profiles;

Parties send item profile gradient
updates to server;

e Server updates item profile.
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Gradient leaks information

(a) Original 20x20 image of hand
written number 0, seen as a vector
over R*% fed to a neural network.

(b) Recovered image using
400/10285 (3.89%) gradients (see
Sect.3, h\ample 2). The difference
with the original (a) is only at
the value bar.

(¢) Recovered image using
400/10285 (3.89%) gradients (see
Sect.3, Example 3). There are
noises but the truth label 0 can
still be seen.

Fig. 3. Original data (a) vs. leakage information (b). (c) from a small part of gradients in a neural network.

» Phong, et al. 2018. Privacy-Preserving Deep Learning via
Additively Homomorphic Encryption. IEEE Trans.
Information Forensics and Security , 13, 5 (2018),1333-

1345

Updated
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parameter
of the other
model

» Gao, et al. 2020. Privacy Threats against Federated Matrix
Factorization, International Workshop on Federated
Learning for User Privacy and Data Confidentiality in
Conjunction with JCAI 2020, (FL-UCAI'20), Kyoto, Japan
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Horizontal Federated Matrix Factorization [Chai et al. 2019]

Intuition: Item profile gradients are encrypted by HE. Semi-honest server securely aggregates
encrypted item profiles gradients, and knows nothing about the profile content.

Honest-but-curious Server

Initialize: initialize the item-profile V, and encrypt it with public key Enc(V, pk) = Cy
Update: perform updates on Cy; whenever receives the encrypted gradient Cg, from user - i by:
CV = CV - CGL'

Parameter Sharing: the latest Cy; are kept available for all users’ download

Latest Cy,
Dec(Cy, sk)

Local Data

Enn

Honest user 1

Enc(Gy, pk)

Honest user 2

Latest C
Dec(Cy, sk)

Enc(G,, pk)

Cg,
.

‘W

Local
Update

Local Data

Local

oy it

Latest Cy,
Dec(Cy, sk)

‘W

Local Data

Eam

Honest user N

CG N

Enc(Gy, pk)I

Local
Update

Chai, et al. 2019. Secure Federated Matrix Factorization. arXiv:1906.05108.
Bonawitz et al. 2017. Practical Secure Aggregation for Privacy-Preserving Machine Learning. CCS, pages 1175-1191.

Training Process:

®
(@

®

Server initializes and encrypts
item profiles;

Sever distributes encrypted item
profiles to parties;

Parties locally update user profiles
with encrypted item profiles;
Parties send encrypted item
profile gradient updates to server;

Server securely aggregates
item profile gradients and
updates item profiles.

Security of secure aggregation protocol
is guaranteed [Bonawitz et al. 2017].
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Category 2: Vertical Federated Recommendation

Users

Items

Large overlap of users of the two rating matrices
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Vertical Federated Recommendation: Case

Example:
Shared users
different features
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. l . i . H Location Time Sports Photography Movie Food

-EE 2| s Georgia | 2018.5 e N N N
Q 5 4 4 Florida | 2019.1 9 N N N N
e - s | 3| 4 Hawaii | 2017.3 0 & v N N Y
! 3 5 Kansas | 2018.5 No data exchange 2 Y Y N N
§ 4 4 Georgia | 2018.10 § N Y Y N
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Federated Factorization Machine [Zheng et al. 2019]

Intuition: cross-features between A and B are useful, but features are sensitive. Federated factorization
machine computes these cross-party cross-features and their gradients under encryption.

I l . i . . Location  Time Sports  Photography ~ Movie Food

e 4|3 2| 5 Georgia | 2018.5 Y N N N
g 5 4 4 Florida | 2019.1 T N N N N
g 4 5| 3| a Hawaii | 2017.3 0 e v N N v
3 5 Kansas | 2018.5 Y Y N N

4 4 Georgia | 2018.10 N Y Y N

No data exchange
3 2 | 4 5 | | Florida | 2019.9 & N Y v Y

Cross features between A and B are useful;
e.g., ‘location x sports” can be a strong indicator for predicting Georgia user’s preference to sports movies.

. . . A B A B (A B A B
Prediction function  f([x\V:x{"]) = f(x[V) + f(x{") + Z( Ll
Cross
features in B
Rendle 2012: Factorization Machines with libFM, in ACM Trans. Intell. Syst. Technol., 3(3), May. 21

Zheng. 2019. Federated factorization machine. Tech Report WeBank.



Federated Factorization Machine [Zheng et al. 2019]

Decryption: decrypt L, send

Honest-but-curlous Server

+m and—+m to partyA,

+m and —+m to party B@

»

m Honest party A

i®

initialize m4 ;

Compute L, [l + [,

[[5_17‘]] +[[mA]);

send to server

Unmask;

Update w4, v

compute [[d,]], [[Z;vf Xp, A0
sendto B

@ | Honest party B m

Unmask;
Update wE, vf

/

N

initialize mB

compute [[ )+ [[m5]),
[[a_v,‘.’]] + [[mB]L

send to server

Q.

initialize w4, VA®

local data (X4,Y)

2
<—-\/compute (WS ILILEIIE v xg 11;
sendto A

local data X8

@nitialize wB, VB

Goldreich et al. 1987. How to Play ANY Mental Game. STOC, pages 218-229.

Training Process
Parties initialize models

Party B sends encrypted partial
prediction, partial loss and partial
feature gradients to party A

Party A sends encrypted error and
partial feature gradients to party B

Parties send encrypted and
masked gradients to server

Server decrypts and sends back

@ © 6 © © 6

Parties unmask and update models

Security of semi-honest MPC protocol
is guaranteed [Goldreich et al. 1987].

22



Federated Factorization Machine [Zheng et al. 2019]

Inference Process: encrypted prediction on party A" s features + encrypted prediction on A&B
features + encrypted prediction on party B’ s features.

Data provider
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Secure feature interaction

1. Party A and B compute encrypted intermediate results
2. Server aggregates the encrypted intermediate results and decrypts
3. Sever sends plain-text prediction to party A
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What If Different Users and Items at the Same Time?

Transfer Federated Recommendation

Transfer

Federated Recommendation

Users

Items

24



Category 3: Transfer Federated Recommendation
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Matrix Tri-factorization [Li et al. 2009] Intuition: similar use.rs/items can be clustered into
groups, and there exist group correspondences

across parties.
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Li et al. Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model, ICML, pp.617-624.
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Federated Matrix Tri-factorization [Tan et al. 2019]

Intuition: codebooks as group correspondences are used for transfer, they are encrypted and securely
aggregated by semi-honest server, and user/item profiles are updated by parties.

Honest-but-curious Server

Initialize: initialize the codebook Z, and encrypt it with public key Enc(Z,pk) - Cx
Update: perform updates on Cz whenever receives the encrypted gradient Cg, from

party i by Cz = Cz - CGi

Parameter Sharing: the latest Cy are kept available for both parties to download

Training Process

Server initializes and encrypts codebook;
@ Parties initializes user and item profiles;

Honest party A Honest party B
Latest Cy Ce, Latest Cy Cep
lDec(Cz, sk) Enc(G4, pk) I \Dec(cz, sk) Enc(Gg, pk)I
P Gradient ¥
Local Data Local Data
Local o Local
RA UA! VA Update RB EB, VB Update

Tan et al. 2019. Federated matrix tri-factorization. Tech Report, WeBank.
Bonawitz et al. 2017. Practical Secure Aggregation for Privacy-Preserving Machine Learning. CCS

9 Server distributes encrypted codebook
to parties;

Parties update user and item factors by
decrypted codebook;

@ Parties compute codebook gradients
and send encrypted gradients to server;

Server securely aggregates encrypted
e codebook gradients and updates
codebook.

Security of secure aggregation protocol
is guaranteed [Bonawitz et al. 2017].

27
, pages 1175-1191.



Application 1: Horizontal Federated Movie Recommendation

Recommender keeps user data on local devices, protects privacy while achieving lossless performance.
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Chai, et al. 2019. Secure federated matrix factorization. arXiv:1906.05108. 28



FedRec: Open-sourced Project

https://github.com/FederatedAl/FedRec

3. Algorithms list:

1. Hetero FM(factorization machine)
Build a hetero factorization machine model through multiple parties.

o Corresponding module name: HeteroFM

e Data Input: Input DTable.

o Model Output: Factorization Machine model.
2. Homo-FM

Build a homo factorization machine model through multiple parties.

e Corresponding module name: HomoFM
e Data Input: Input DTable.

* Model Output: Factorization Machine model.

3. Hetero MF(matrix factorization)
Build a hetero matrix factorization model through multiple parties.

e Corresponding module name: HeteroMF
e Data Input: Input DTable of user-item rating matrix data.

e Model Output: Matrix Factorization model.

4. Hetero SVD
Build a hetero SVD model through multiple parties.

e Corresponding module name: HeteroSVD
e Data Input: Input DTable of user-item rating matrix data.
e Model Output: Hetero SVD model.

5. Hetero SVD++
Build a hetero SVD++ model through multiple parties.

e Corresponding module name: HeteroSVDPP
e Data Input: Input DTable of user-item rating matrix data.

e Model Output: Hetero SVD++ model.
6. Hetero GMF
Build a hetero GMF model through multiple parties.

e Corresponding module name: HeteroGMF

e Data Input: Input DTable of user-item rating matrix data(using positive data only).

¢ Model Output: Hetero GMF model.

More available algorithms are coming soon.
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https://github.com/FederatedAI/FedRec

Application 2: Vertical Federated News Feeds Recommendation

https://ad.webank.com/fedrecdemo/index.html?type=en

Data Provider

Application Content Online Product

Layer Recommender | | Advertising || Recommender | | """

__________________________________ 3_________________________.

Interface Authority Recommendation

Layer Control Service API Data AP

..................................

Service User Log . Recommendation

Layer Profiling | | Manager Monitoring Service

""""""""""""""""""" ‘t'"""""""""""' i

Agorithm || pooeoerated | FaTE | FATE Guest || paTe FATE [ FATE | FATE Host
Layer Libra Serving || Data Access || Proxy Exchange ‘ Proxy | Data Access
_________________________________

Dat; i

Layor |HBase| | HIVE | | HDFS | | Reds | |c2ot

Results

4m Without FedRec

Tan et al, 2020, A Federated Recommender System for Online Services. RecSys 20, Virtual Event, Brazil, September 21-26, 2020

With FedRecmp |
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https://ad.webank.com/fedrecdemo/index.html?type=en

Application 2: Vertical Federated News Feeds Recommendation

Recommender leverages auxiliary user data to address cold start and improve performance.

User’s Internet browsing
behaviors from 3rd-party

Finance News Feeds Recommendation
PV 21%
uv 22%

CTR 11%

31



Summary

* Recommender systems can be improved with more data
* Yet privacy and security needs to be addressed

* Federated learning to bridge decentralized data in recommendation
* Vertical Federated Recommendation (a.k.a. user-based FedRec)

* Horizontal Federated Recommendation (a.k.a. item-based FedRec)

Contact us

* Transfer Federated Recommendation

* FedRec is an underexplored area with a lot of opportunities




