# **Federated Recommendation Systems**

Ben Tan, AI Group, WeBank, China

### **Recommender Systems Have Been Widely Used**





### **Recommender Systems Improve User Engagement**

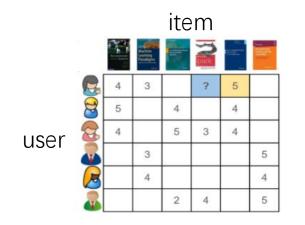


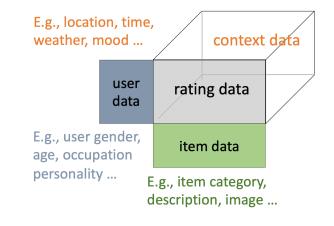
personized services



YouTube Homepage: 60%+ more clicks [Davidson et al. 2010] Netflix: 80%+ more movie watches [Gomze-Uribe et al 2016] Amazon: 30%+ more page views [Smith and Linden, 2017]

### **Overview of Recommender Systems**

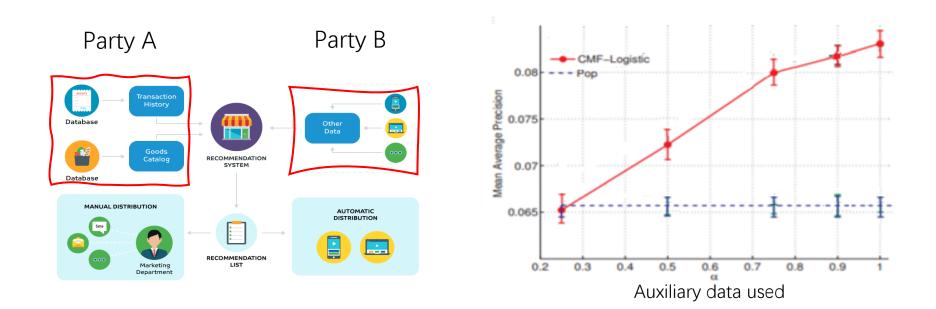




**Input:** historical user-item interactions, and optionally additional side information (e.g., user demographic, item attributes)

**Output**: how likely a user would interact with an item (e.g., a movie, a song, a product)

### More Data Used in Recommender Systems, Better Performance



- Singh and Gordon 2008. Relational learning via collective matrix factorization. ACM KDD 2008.
- Pan 2016. A survey of transfer learning for collaborative recommendation with auxiliary data. Neurocomputing.

### **Reality in Recommender Systems: Data Silos**



### Facebook finally rolls out privacy tool for your browsing history

By Kaya Yurieff, CNN Business Updated 1839 GMT (0239 HKT) August 2



### **Google strengthens Chrome's privacy controls**

Frederic Lardinois @fredericl

#### BUSINESS Markets Tech Media Success Perspectives Videos

Edition V

**Google** today announced that will, in the long run, intr cookies and enhance its us

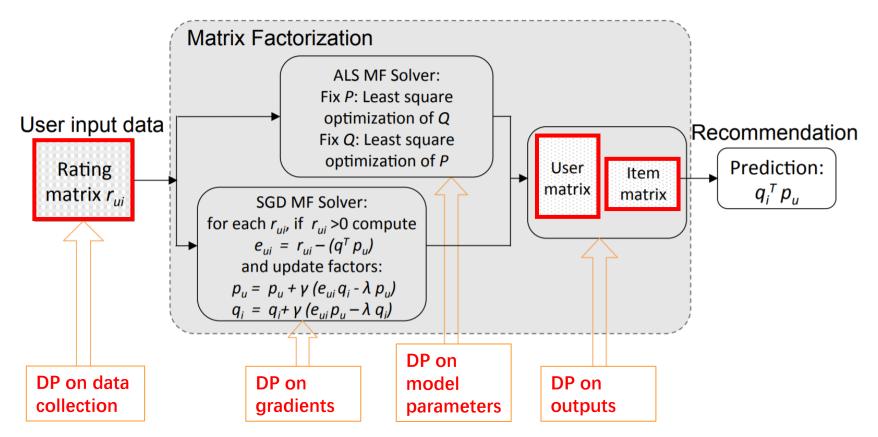
With this move, Google is n anti-fingerprinting technolog happening in the Chrome b change and adapt their coc

# Top Microsoft exec says online privacy has reached 'a crisis point'

By <u>Clare Duffy</u>, <u>CNN Business</u> Updated 1749 GMT (0149 HKT) October 14, 2019

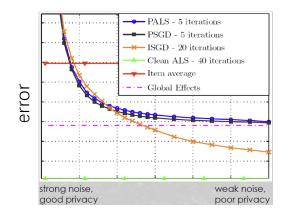


### Differentially Private Matrix Factorization [Knijnenburg and Berkovsky, 2017]



Bart P. Knijnenburg and Shlomo Berkovsky, 2017. Privacy for Recommender Systems. RecSys 2017 Tutorial.

## We Need New Technology for RecSys with Decentralized Data



Increasing noise, decreasing performance

# Desired properties for new technology:



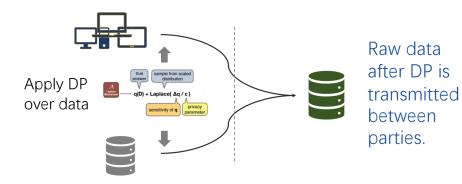
Lossless performance in decentralized setting, compared with centralized setting.

Data protected in decentralized

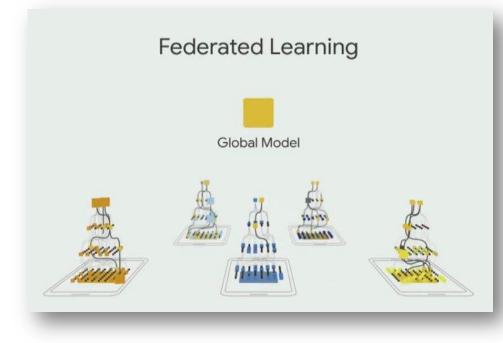
9

setting, with raw data staying

locally.



## Federated Learning to Bridge Decentralized Data



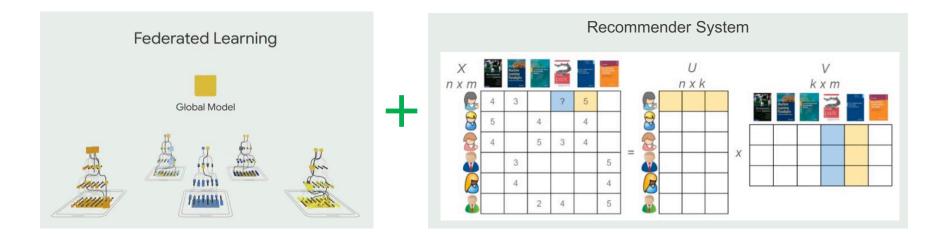
### **Lossless performance**

• Performance of 'A fed B' is close to 'A+B'

### **Data protected**

- Raw data stays locally
- Only parameters and gradients are securely transmitted

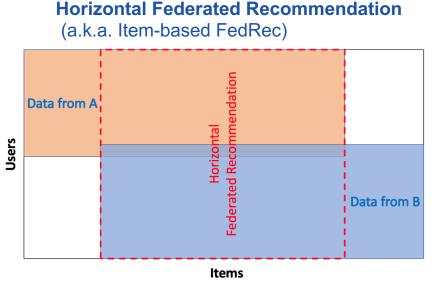
# **Federated Recommendation**



**Assumption**: for easier understanding and system efficiency, we assume the existence of a trustworthy 3<sup>rd</sup>-party server in the following federated recommendation solution discussion.

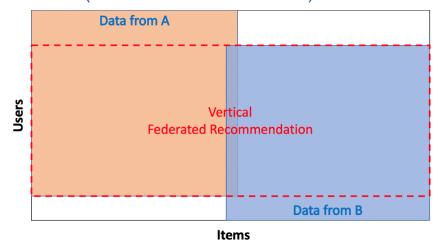
In general, such 3<sup>rd</sup>-party servers can be removed to strengthen the data security.

# **Categorization of Federated Recommendation**



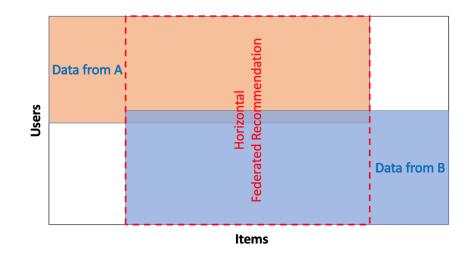
Large overlap of items of the two rating matrices

# **Vertical Federated Recommendation** (a.k.a. User-based FedRec)



#### Large overlap of users of the two rating matrices

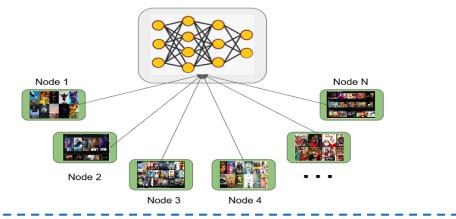
# **Category 1: Horizontal Federated Recommendation**



Large overlap of items of the two rating matrices

### **Horizontal Federated Recommendation: Case 1**

Example: movie recommendation with data from individual users





Party A





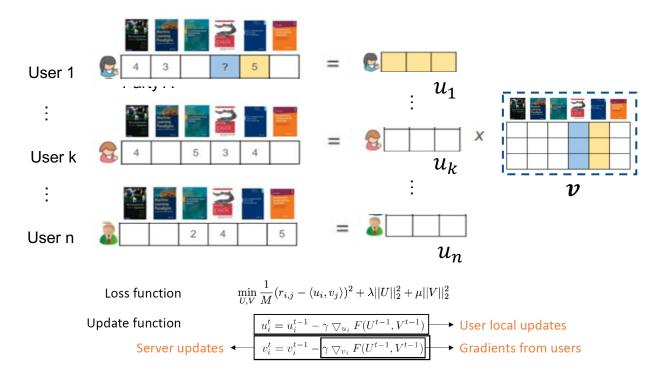
Party B



Party C

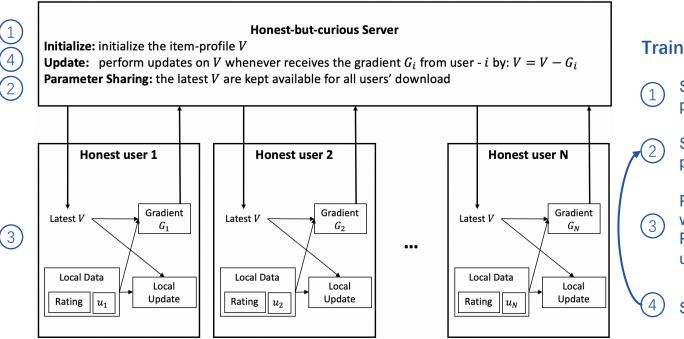
### Federated Collaborative Filtering [Ammad et al. 2019]

**Intuition:** decentralized matrix factorization, each user profile is updated locally, item profiles are aggregated and updated by server.



### Federated Collaborative Filtering [Ammad et al. 2019]

Pros: user data is decentralized. Cons: no MPC (plaintext gradients).



#### **Training Process:**

Server initializes item profiles, parties initializes user profiles;

Sever distributes item profiles to parties;



Server updates item profile.

16

### **Gradient leaks information**

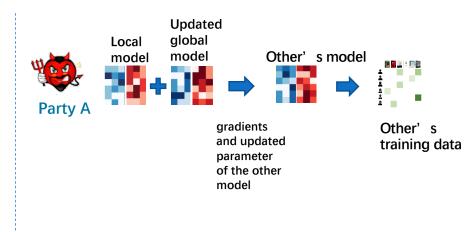




(a) Original 20x20 image of handwritten number 0, seen as a vector over R<sup>400</sup> fed to a neural network. (b) Recovered image using 400/10285 (3.89%) gradients (see Sect.3, Example 2). The difference with the original (a) is only at the value bar. (c) Recovered image using 400/10285 (3.89%) gradients (see Sect.3, Example 3). There are noises but the truth label 0 can still be seen.

Fig. 3. Original data (a) vs. leakage information (b), (c) from a small part of gradients in a neural network.

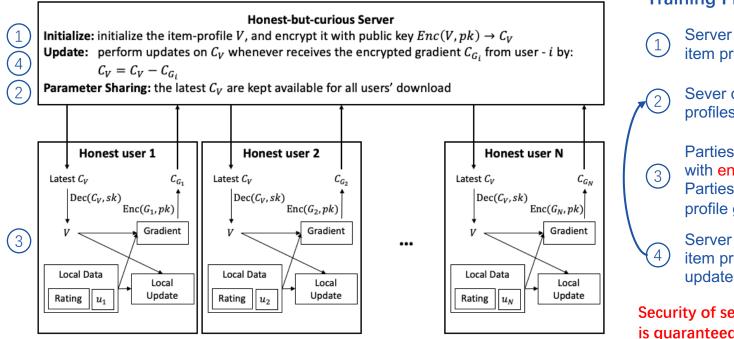
Phong, et al. 2018. Privacy-Preserving Deep Learning via Additively Homomorphic Encryption. IEEE Trans. Information Forensics and Security, 13, 5 (2018),1333– 1345



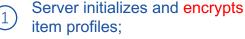
Gao, et al. 2020. Privacy Threats against Federated Matrix Factorization, International Workshop on Federated Learning for User Privacy and Data Confidentiality in Conjunction with IJCAI 2020, (FL-IJCAI'20), Kyoto, Japan

### Horizontal Federated Matrix Factorization [Chai et al. 2019]

**Intuition:** Item profile gradients are encrypted by HE. Semi-honest server securely aggregates encrypted item profiles gradients, and knows nothing about the profile content.



Training Process:



Sever distributes encrypted item profiles to parties;



Parties locally update user profiles with encrypted item profiles; Parties send encrypted item profile gradient updates to server;

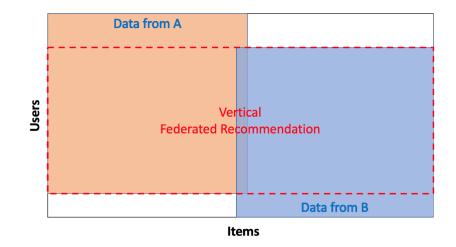
Server securely aggregates item profile gradients and updates item profiles.

Security of secure aggregation protocol is guaranteed [Bonawitz et al. 2017].

Chai. et al. 2019. Secure Federated Matrix Factorization. arXiv:1906.05108.

Bonawitz et al. 2017. Practical Secure Aggregation for Privacy-Preserving Machine Learning. CCS, pages 1175–1191.

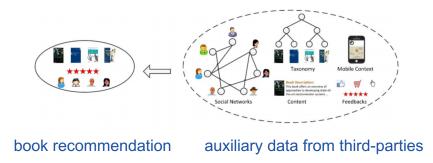
### **Category 2: Vertical Federated Recommendation**



#### Large overlap of users of the two rating matrices

### **Vertical Federated Recommendation: Case**

Example: Shared users different features





#### Location Time





|   | Sports | Photography | Movie | Food |
|---|--------|-------------|-------|------|
|   | Y      | N           | Ν     | N    |
| 8 | Ν      | N           | Ν     | N    |
| 8 | Y      | N           | Ν     | Y    |
| - | Y      | Y           | Ν     | N    |
| ß | Ν      | Y           | Y     | N    |
| 2 | Ν      | Y           | Y     | Y    |

Party B

Party A

### Federated Factorization Machine [Zheng et al. 2019]

**Intuition:** cross-features between A and B are useful, but features are sensitive. Federated factorization machine computes these cross-party cross-features and their gradients under encryption.



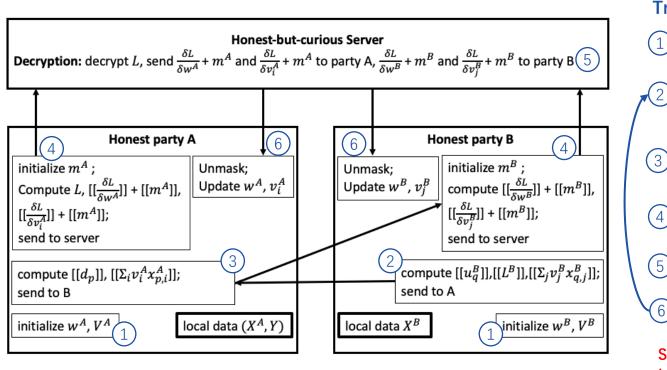
#### Cross features between A and B are useful:

e.g., "location x sports" can be a strong indicator for predicting Georgia user's preference to sports movies.

Prediction function  $f([\mathbf{x}_{p}^{(A)}; \mathbf{x}_{q}^{(B)}]) = f(\mathbf{x}_{p}^{(A)}) + f(\mathbf{x}_{q}^{(B)}) + \sum_{i=1}^{n} \langle \mathbf{v}_{i}^{(A)}, \mathbf{v}_{j}^{(B)} \rangle x_{p,i}^{(A)} x_{q,j}^{(B)}$ Cross features in A Cross features between A and B

- Rendle 2012: Factorization Machines with libFM, in ACM Trans. Intell. Syst. Technol., 3(3), May.
- Zheng. 2019. Federated factorization machine. Tech Report WeBank.

### Federated Factorization Machine [Zheng et al. 2019]



#### **Training Process**

6

Parties initialize models 1

Party B sends encrypted partial 2 prediction, partial loss and partial feature gradients to party A

Party A sends encrypted error and  $\left( 3 \right)$ partial feature gradients to party B

Parties send encrypted and 4 masked gradients to server

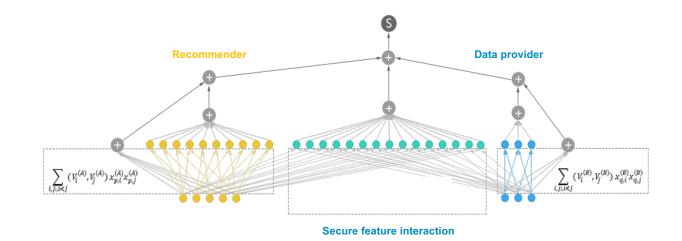
Server decrypts and sends back

Parties unmask and update models

Security of semi-honest MPC protocol is guaranteed [Goldreich et al. 1987].

### Federated Factorization Machine [Zheng et al. 2019]

**Inference Process:** encrypted prediction on party A' s features + encrypted prediction on A&B features + encrypted prediction on party B' s features.

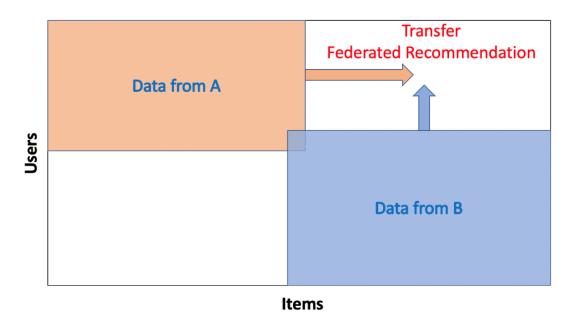


1. Party A and B compute encrypted intermediate results

- 2. Server aggregates the encrypted intermediate results and decrypts
- 3. Sever sends plain-text prediction to party A

### What If Different Users and Items at the Same Time?

### **Transfer Federated Recommendation**



### **Category 3: Transfer Federated Recommendation**

Example: movie and book recommenders with different groups of users





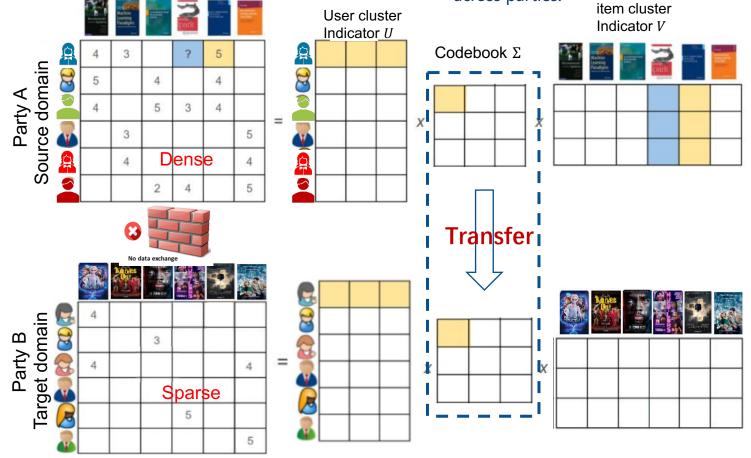


| _ |   | Naives<br>Autom |   |   | - |   |
|---|---|-----------------|---|---|---|---|
| 7 | 4 |                 |   | 4 | 3 |   |
| 3 | 5 |                 | 3 |   | 4 |   |
| 3 | 4 |                 | 5 | 3 | 4 | 4 |
|   |   | 3               | 4 |   |   | 5 |
| R |   | 4               |   | 5 |   | 4 |
|   | 3 |                 | 2 | 4 |   | 5 |

### Matrix Tri-factorization [Li et al. 2009]

**Intuition**: similar users/items can be clustered into groups, and there exist group correspondences across parties.

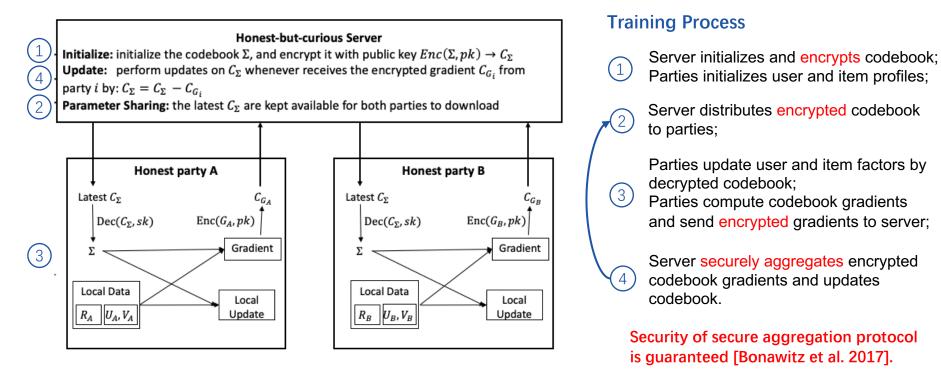
26



Li et al. Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model, ICML, pp.617-624.

## Federated Matrix Tri-factorization [Tan et al. 2019]

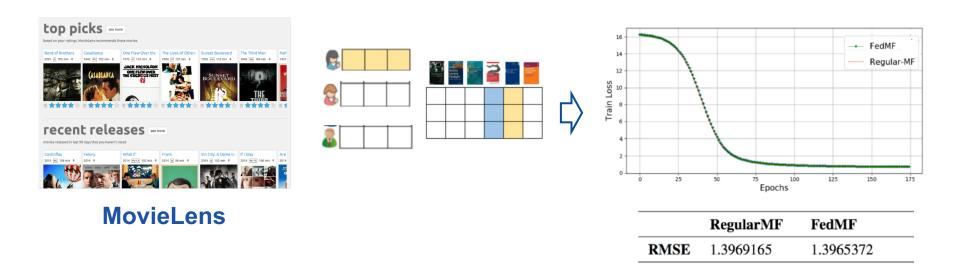
**Intuition:** codebooks as group correspondences are used for transfer, they are encrypted and securely aggregated by semi-honest server, and user/item profiles are updated by parties.



- Tan et al. 2019. Federated matrix tri-factorization. Tech Report, WeBank.
- Bonawitz et al. 2017. Practical Secure Aggregation for Privacy-Preserving Machine Learning. CCS, pages 1175–1191.

### **Application 1: Horizontal Federated Movie Recommendation**

Recommender keeps user data on local devices, protects privacy while achieving lossless performance.



### FedRec: Open-sourced Project

### https://github.com/FederatedAI/FedRec

#### 3. Algorithms list:

#### 1. Hetero FM(factorization machine)

Build a hetero factorization machine model through multiple parties.

- Corresponding module name: HeteroFM
- Data Input: Input DTable.
- Model Output: Factorization Machine model.

#### 2. Homo-FM

Build a homo factorization machine model through multiple parties.

- Corresponding module name: HomoFM
- Data Input: Input DTable.
- Model Output: Factorization Machine model.

#### 3. Hetero MF(matrix factorization)

Build a hetero matrix factorization model through multiple parties.

- Corresponding module name: HeteroMF
- Data Input: Input DTable of user-item rating matrix data.
- Model Output: Matrix Factorization model.

#### 4. Hetero SVD

Build a hetero SVD model through multiple parties.

- Corresponding module name: HeteroSVD
- Data Input: Input DTable of user-item rating matrix data.
- · Model Output: Hetero SVD model.

#### 5. Hetero SVD++

Build a hetero SVD++ model through multiple parties.

- Corresponding module name: HeteroSVDPP
- Data Input: Input DTable of user-item rating matrix data.
- Model Output: Hetero SVD++ model.

#### 6. Hetero GMF

Build a hetero GMF model through multiple parties.

- Corresponding module name: HeteroGMF
- Data Input: Input DTable of user-item rating matrix data(using positive data only).
- Model Output: Hetero GMF model.

More available algorithms are coming soon.

### **Application 2: Vertical Federated News Feeds Recommendation**

https://ad.webank.com/fedrecdemo/index.html?type=en



Tan et al, 2020, A Federated Recommender System for Online Services. RecSys '20, Virtual Event, Brazil, September 21–26, 2020

### **Application 2: Vertical Federated News Feeds Recommendation**

Recommender leverages auxiliary user data to address cold start and improve performance.



# User's Internet browsing behaviors from 3<sup>rd</sup>-party



#### **Finance News Feeds Recommendation**

| PV  | 21% |
|-----|-----|
| UV  | 22% |
| CTR | 11% |

# Summary

- Recommender systems can be improved with more data
- Yet privacy and security needs to be addressed
- Federated learning to bridge decentralized data in recommendation
  - Vertical Federated Recommendation (a.k.a. user-based FedRec)
  - Horizontal Federated Recommendation (a.k.a. item-based FedRec)
  - Transfer Federated Recommendation
- FedRec is an underexplored area with a lot of opportunities

Contact us